

8th. INTERNATIONAL PLANETARY PROBE **WORKSHOP**

PORTSMOUTH, VIRGINIA

6-10 JUNE 2011

Sebastian Lein, Stefan Löhle, Georg Herdrich, Monika Auweter-Kurtz, Stefanos Fasoulas

- Emission spectroscopic in-flight experiments provide data for validation of chemical/radiation models employed to simulate the loads on TPS systems
 - Validation of design tools
- Suitability of ground test facilities is limited
 - Multitude of relevant parameters can not be reproduced at the same time
- → In-flight experiments required

- Overview of past emission spectroscopic experiments for atmospheric entry
 - FIRE I & FIRE II
 - Bow Shock UV & UV Diagnostics Experiment
 - Airborne observation campaigns
 - Stardust
 - ATV1 Jules Verne
 - Hayabusa
- RESPECT / EXPERT
 - Experiment design
 - EXPERT mission
 - Expected results / post flight analysis
- Conclusions

FIRE - Flight Investigation of the Reentry Environment

- 2 re-entry flights in 1964/1965 in preparation of the Apollo program
- > Blunt, Apollo like shaped capsule
 - Nose radius: 0.935m, diameter: 0.672m / 0.630m / 0.587m
- Hyperbolic re-entry
 - FIRE I: $v = 11.57 \text{ km/s}, \gamma = -14.6^{\circ}$
 - FIRE II: $v = 11.35 \text{ km/s}, \gamma = -14.7^{\circ}$
- Instrumentation for radiation heat flux
 - 1 spectrometer system x
 - 200nm 600nm
 (FIRE II: limited to 300nm – 600nm due to blocked mechanism
 - 4nm spectral resolution
 - 3 radiometer systems O
 - 200nm 4000nm

Cauchon, D. L., Radiative Heating Results from the FIRE II Flight Experiment at a Re-entry Velocity of 11.4 Kilometers per Second, TM X-1402, NASA, 1967.

- Layered heat shield
 - → Measurement periods in clean environment
 - flow undisturbed from erosion products
 - realized by 3 calorimeter layers
- Test case for coupled flow field/radiation simulation (Park, Merrifield/Fertig)
 - Rebuilding of total heat flux is rather successful, but limitations apply:
 - simulations show up to 90% of total radiation heat flux in VUV
 - → VUV measurements recommended
 - Absorption in boundary layer extremely sensitive to chemical composition
 - →TPS material characterization/ consideration of gas surface interaction (catalysis) required
- FIRE II is considered one of most significant in-flight experiments

Cauchon, D. L., Radiative Heating Results from the FIRE II Flight Experiment at a Re-entry Velocity of 11.4 Kilometers per Second, TM X-1402, NASA, 1967.

Data Period	Altitude / km	Velocity / km/s
Fire I		
1	89.01 – 70.00	11.63 – 11.53
Fire II		
1	83.75 – 69.80	11.37 – 11.30
2	54.34 – 53.23	10.61 – 10.51
3	41.80 – 40.75	8.20 – 7.74

Bow Shock UV & UV Diagnostics Experiment

- Flight regime different to the hyperbolic conditions of FIRE
 Bow Shock UV (BSUV), 1990
 - measurement during ascent from 38km 70km, v = 3.5km/s
 - UV Diagnostics Experiment (UVDE), 1991
 - measurement during re-entry, structural failure at 62km, v = 5.1km/s
- Instrumentation (BSUV & UVDE)
 - Upper stage with nose radius of 0.1016m instrumented with:
 - 8 radiometers (different viewing angles, 0°, 30°, 50°)
 - NO γ , OH A-X and N₂⁺ 1st. neg. band systems
 - NO filled CaF₂ window acting as VUV detector (O I 130.4nm + H I 121.5nm (only UVDE))
 - 1 spectrometer (stagnation point)
 - 200nm 400nm
 - 1nm spectral resolution
- Numerical rebuilding successful for lower altitudes
- Triggered improvements (Kanne):
 - NO reaction rates
 - electronic excitation due to heavy particle collisions
- Allowed for validation of numerical models originally developed for hyperbolic entry

Erdman, et al, Measurement of Ultraviolet Radiation from a 5-km/s Bow Shock, Journal of Thermo-physics and Heat Transfer, Vol. 8, No. 3, 1994

Stardust, ATV1 & Hayabusa Airborne Observation

- > Emerged from a lack of onboard instrumentation
- Multitude of spectroscopic experiments part of airborne observation campaigns
- Covering different spectral ranges/resolutions > various scientific goals
- Disadvantages:
 - Large distance to measurement object → loss of spatial resolution
 - Influence of atmospheric signal extinction, in particular for VUV
- Advantages:
 - Volume, mass, power consumption less restricted
 - Mechanical and thermal loads almost negligible
- → Allow for in-flight experiments not fitting in budgets or environment of re-entry vehicles

Lips, et al, Assessment of the ATV-1 Re-Entry Observation Campaign for Future Re-Entry Missions, 4th. IAASS Conference, Huntsville, AL, 2010

- 1. European spectrometer system for re-entry application
- Developed in the frame of the ESA EXPERT
- Goal: Build a database on spectrally resolved emission during re-entry
- Comparison with coupled flow field/radiation codes
 - → achieve information about chemical/radiation models used (validation)

Sensor Head 1 (C/C-SiC nose):

- Higher temperatures in the stagnation region
 - \rightarrow more species observed
 - more accurate statements on chemical models possible
- Detection of erosion products possible. (i.e. active/passive oxidation)

Sensor Head 2 (PM1000 panels):

Examination of relaxation

RESPECT sensor system

Fiber Optics & Sensor Unit

- Sensor system developed at IRS on basis of miniaturized spectrometer (OceanOptics S2000)
- Further electronics components: microcontroller for spectrometer control, data storage, communication & power conditioning
- Sensor heads individually designed based on the requirements of the TPS

system parameters:

mass: ≈2.3kg + harness

- **→** ≈ 2.0kg SU
- → ≈ 0.2kg SH1
- → ≈ 0.1kg SH2

power consumption:

→ ≈ 3.5 W

data interface:

- → RS422 @115kbps
- → 3082 bytes per spectrum

measurement spec .:

- → ≈ 200 850nm
- **→** FWHM ≈ 1.5nm
- → sampling rate up to 15Hz

- ESA project for technology demonstration and investigation of various phenomena related to atmospheric entry:
 - Real gas effects
 - Transition (APT-PAT, LTT)
 - Shock layer chemistry
 - Catalytic effects
- Realization:
 - Ballistic capsule with 14 scientific payloads
 - Vehicle dimensions: 1.6 m length x 1.2 m diameter
 - Mass: 436kg
 - Nose radius: 0.55 m

EXPERT - Mission

- Launch in 2012 with Russian Volna rocket
 - Submarine launch in Pacific ocean
 - Parachute landing on Kamchatka peninsula
- Parabolic suborbital flight path
 - Re-entry: v_e=5 km/s, γ_e=-5,5°
- Measurement period covers whole trajectory
 - Payload activation prior to re-entry
 - Payload deactivation at ≈17km
- Trajectory similar to UVDE, but lower altitudes will be covered, too
 - EXPERT/RESPECT complements available set of spectroscopic data
 - FIRE: high-speed
 - BSUV: low-speed
- > Further asset:
 - 14 different experiments in one flight

Calibration check & Sensor system inspection

Post processing of measured spectra

Link to EXPERT PLs and trajectory data

- cooperation -

URANUS flow field simulation

PARADE radiation simulation

Calibrated spectra

COMPARISON

Rebuilt spectra

Results:

- Species Identification incl. Erosion Products (if existing)
- Detection of PAT –APT
- Estimation of excitation temperatures
- Analysis of relaxation

Initiation of new TRPs (e.g. QSS modeling)

Improvement/Validation of Numerical Models

- Statement on accuracy of current numerical models
 - Chemistry modeling (emphasis on oxygen)
 - Radiation modeling (required improvements in QSS modeling expected)
- Diffusion, chemistry and radiation modeling of erosion products (if existing)
- Test case definition for numerical tools

Results:

- Extraction of locally resolved plasma composition (e.g. particle densities, excitation temperatures, ...)
- Analysis of relaxation

Immediate impact on future re-entry vehicle design by increased reliability of design basis (numerics).

Conclusions

- So far, only a few emission spectroscopic in-flight experiments performed
 - FIRE I / FIRE II (1964/1965)
 - Hyberbolic entry
 - Nitrogen chemistry and radiation modeling
 - VUV, plasma wall interaction
 - BSUV /UVDE (1990/1991)
 - Low(er)-speed
 - NO reaction rates
- Complemented by RESPECT/EXPERT (2012)
 - O₂/NO
 - Extended wavelength range (200nm-850nm)
 - EXPERT incorporates 14 different scientific payloads
- > Set of in-flight data available to validate numerical tools, but limitations apply
 - All experiments related to Earth re-entry
 - No VUV experiments
- Future Experiments (?)
 - VUV
 - Radiation ablation coupling
 - Other atmospheres (e.g. Mars, CO₂)